/* ———————————————————————–

o32.S - Copyright (c) 1996, 1998, 2005  Red Hat, Inc.

MIPS Foreign Function Interface 

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */

define LIBFFI_ASM

include <fficonfig.h> include <ffi.h>

/* Only build this code if we are compiling for o32 */

if defined(FFI_MIPS_O32)

define callback a0 define bytes a2 define flags a3

define SIZEOF_FRAME (4 * FFI_SIZEOF_ARG + 2 * FFI_SIZEOF_ARG) define A3_OFF (SIZEOF_FRAME + 3 * FFI_SIZEOF_ARG) define FP_OFF (SIZEOF_FRAME - 2 * FFI_SIZEOF_ARG) define RA_OFF (SIZEOF_FRAME - 1 * FFI_SIZEOF_ARG)

.abicalls
.text
.align  2
.globl  ffi_call_O32
.ent    ffi_call_O32

ffi_call_O32:

$LFB0:

# Prologue
SUBU    $sp, SIZEOF_FRAME       # Frame size

$LCFI00:

REG_S   $fp, FP_OFF($sp)        # Save frame pointer

$LCFI01:

REG_S   ra, RA_OFF($sp)         # Save return address

$LCFI02:

move    $fp, $sp

$LCFI03:

move    t9, callback            # callback function pointer
REG_S   flags, A3_OFF($fp)      # flags

# Allocate at least 4 words in the argstack
LI      v0, 4 * FFI_SIZEOF_ARG
blt     bytes, v0, sixteen

ADDU    v0, bytes, 7    # make sure it is aligned 
and     v0, -8          # to an 8 byte boundry

sixteen:

SUBU    $sp, v0         # move the stack pointer to reflect the
                        # arg space

ADDU    a0, $sp, 4 * FFI_SIZEOF_ARG

jalr    t9

REG_L   t0, A3_OFF($fp)         # load the flags word
SRL     t2, t0, 4               # shift our arg info
and     t0, ((1<<4)-1)          # mask out the return type

ADDU    $sp, 4 * FFI_SIZEOF_ARG         # adjust $sp to new args

ifndef __mips_soft_float

bnez    t0, pass_d                      # make it quick for int

endif

REG_L   a0, 0*FFI_SIZEOF_ARG($sp)       # just go ahead and load the
REG_L   a1, 1*FFI_SIZEOF_ARG($sp)       # four regs.
REG_L   a2, 2*FFI_SIZEOF_ARG($sp)
REG_L   a3, 3*FFI_SIZEOF_ARG($sp)
b       call_it

ifndef __mips_soft_float pass_d:

bne     t0, FFI_ARGS_D, pass_f
l.d     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
REG_L   a2,   2*FFI_SIZEOF_ARG($sp)     # passing a double
REG_L   a3,   3*FFI_SIZEOF_ARG($sp)
b       call_it

pass_f:

bne     t0, FFI_ARGS_F, pass_d_d
l.s     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
REG_L   a1,   1*FFI_SIZEOF_ARG($sp)     # passing a float
REG_L   a2,   2*FFI_SIZEOF_ARG($sp)
REG_L   a3,   3*FFI_SIZEOF_ARG($sp)
b       call_it

pass_d_d:

bne     t0, FFI_ARGS_DD, pass_f_f
l.d     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
l.d     $f14, 2*FFI_SIZEOF_ARG($sp)     # passing two doubles
b       call_it

pass_f_f:

bne     t0, FFI_ARGS_FF, pass_d_f
l.s     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
l.s     $f14, 1*FFI_SIZEOF_ARG($sp)     # passing two floats
REG_L   a2,   2*FFI_SIZEOF_ARG($sp)
REG_L   a3,   3*FFI_SIZEOF_ARG($sp)
b       call_it

pass_d_f:

bne     t0, FFI_ARGS_DF, pass_f_d
l.d     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
l.s     $f14, 2*FFI_SIZEOF_ARG($sp)     # passing double and float
REG_L   a3,   3*FFI_SIZEOF_ARG($sp)
b       call_it

pass_f_d:

# assume that the only other combination must be float then double
#      bne     t0, FFI_ARGS_F_D, call_it
       l.s     $f12, 0*FFI_SIZEOF_ARG($sp)     # load $fp regs from args
       l.d     $f14, 2*FFI_SIZEOF_ARG($sp)     # passing double and float

endif

call_it:

# Load the static chain pointer
REG_L   t7, SIZEOF_FRAME + 6*FFI_SIZEOF_ARG($fp)

# Load the function pointer
REG_L   t9, SIZEOF_FRAME + 5*FFI_SIZEOF_ARG($fp)

# If the return value pointer is NULL, assume no return value.
REG_L   t1, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)
beqz    t1, noretval

and     t1, t2, ((1<<4)-1)
bne     t1, FFI_TYPE_INT, retlonglong
jalr    t9
REG_L   t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)
REG_S   v0, 0(t0)
b       epilogue

retlonglong:

# Really any 64-bit int, signed or not.
bne     t1, FFI_TYPE_UINT64, retfloat
jalr    t9
REG_L   t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)
REG_S   v1, 4(t0)
REG_S   v0, 0(t0)
b       epilogue

retfloat:

bne     t1, FFI_TYPE_FLOAT, retdouble
jalr    t9
REG_L   t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)

ifndef __mips_soft_float

s.s     $f0, 0(t0)

else

REG_S   v0, 0(t0)

endif

b       epilogue

retdouble:

bne     t1, FFI_TYPE_DOUBLE, retcomplex
jalr    t9
REG_L   t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)

ifndef __mips_soft_float

s.d     $f0, 0(t0)

else

REG_S   v1, 4(t0)
REG_S   v0, 0(t0)

endif

b       epilogue

retcomplex:

# mask out the complex elements type.
# the struct of flags (bits):
# 0-1: arg0
# 2-3: arg1
# 4-7: return type
# 8-11: rtype elements type: for complex
# Note here: t2 is flags>>4
bne     t1, FFI_TYPE_COMPLEX, noretval
jalr    t9
REG_L   t0, SIZEOF_FRAME + 4*FFI_SIZEOF_ARG($fp)
REG_L   t1, A3_OFF($fp)         # load the flags word
SRL     t1, t1, 8
li      t3, 3
beq     t1, t3, 3f # double
li      t3, 2
beq     t1, t3, 2f # float
# FIXME: long double
slti    t3, t1, 5
beqz    t3, 5f     # (u)int8/16/32/64

2: ifndef __mips_soft_float

s.s     $f0, 0(t0)
s.s     $f2, 4(t0)

else

# FIXME: do nothing can pass all of the testsuite

endif

b       epilogue

3: ifndef __mips_soft_float

s.d     $f0, 0(t0)
s.d     $f2, 8(t0)

else

# FIXME: do nothing can pass all of the testsuite

endif

b       epilogue

5:

REG_S   v1, 4(t0)
REG_S   v0, 0(t0)
b       epilogue

noretval:

jalr    t9

# Epilogue

epilogue:

move    $sp, $fp        
REG_L   $fp, FP_OFF($sp)        # Restore frame pointer
REG_L   ra, RA_OFF($sp)         # Restore return address
ADDU    $sp, SIZEOF_FRAME       # Fix stack pointer
j       ra

$LFE0:

.end    ffi_call_O32

/* ffi_closure_O32. Expects address of the passed-in ffi_closure

 in t4 ($12). Stores any arguments passed in registers onto the
 stack, then calls ffi_closure_mips_inner_O32, which
 then decodes them.

 Stack layout:

  3 - a3 save
  2 - a2 save
  1 - a1 save
  0 - a0 save, original sp
 -1 - ra save
 -2 - fp save
 -3 - $16 (s0) save
 -4 - cprestore
 -5 - return value high (v1)
 -6 - return value low (v0)
 -7 - f14 (le high, be low)
 -8 - f14 (le low, be high)
 -9 - f12 (le high, be low)
-10 - f12 (le low, be high)
-11 - Called function a5 save
-12 - Called function a4 save
-13 - Called function a3 save
-14 - Called function a2 save
-15 - Called function a1 save
-16 - Called function a0 save, our sp and fp point here
  */

define SIZEOF_FRAME2 (16 * FFI_SIZEOF_ARG) define A3_OFF2 (SIZEOF_FRAME2 + 3 * FFI_SIZEOF_ARG) define A2_OFF2 (SIZEOF_FRAME2 + 2 * FFI_SIZEOF_ARG) define A1_OFF2 (SIZEOF_FRAME2 + 1 * FFI_SIZEOF_ARG) define A0_OFF2 (SIZEOF_FRAME2 + 0 * FFI_SIZEOF_ARG) define RA_OFF2 (SIZEOF_FRAME2 - 1 * FFI_SIZEOF_ARG) define FP_OFF2 (SIZEOF_FRAME2 - 2 * FFI_SIZEOF_ARG) define S0_OFF2 (SIZEOF_FRAME2 - 3 * FFI_SIZEOF_ARG) define GP_OFF2 (SIZEOF_FRAME2 - 4 * FFI_SIZEOF_ARG) define V1_OFF2 (SIZEOF_FRAME2 - 5 * FFI_SIZEOF_ARG) define V0_OFF2 (SIZEOF_FRAME2 - 6 * FFI_SIZEOF_ARG) define FA_1_1_OFF2 (SIZEOF_FRAME2 - 7 * FFI_SIZEOF_ARG) define FA_1_0_OFF2 (SIZEOF_FRAME2 - 8 * FFI_SIZEOF_ARG) define FA_0_1_OFF2 (SIZEOF_FRAME2 - 9 * FFI_SIZEOF_ARG) define FA_0_0_OFF2 (SIZEOF_FRAME2 - 10 * FFI_SIZEOF_ARG) define CALLED_A5_OFF2 (SIZEOF_FRAME2 - 11 * FFI_SIZEOF_ARG) define CALLED_A4_OFF2 (SIZEOF_FRAME2 - 12 * FFI_SIZEOF_ARG)

.text

.align  2
.globl  ffi_go_closure_O32
.ent    ffi_go_closure_O32

ffi_go_closure_O32: $LFB1:

# Prologue
.frame  $fp, SIZEOF_FRAME2, ra
.set    noreorder
.cpload t9
.set    reorder
SUBU    $sp, SIZEOF_FRAME2
.cprestore GP_OFF2

$LCFI10:

REG_S   $16, S0_OFF2($sp)        # Save s0
REG_S   $fp, FP_OFF2($sp)        # Save frame pointer
REG_S   ra, RA_OFF2($sp)         # Save return address

$LCFI11:

move    $fp, $sp

$LCFI12:

REG_S   a0, A0_OFF2($fp)
REG_S   a1, A1_OFF2($fp)
REG_S   a2, A2_OFF2($fp)
REG_S   a3, A3_OFF2($fp)

# Load ABI enum to s0
REG_L   $16, 4($15)     # cif 
REG_L   $16, 0($16)     # abi is first member.

li      $13, 1          # FFI_O32
bne     $16, $13, 1f    # Skip fp save if FFI_O32_SOFT_FLOAT

ifndef __mips_soft_float

# Store all possible float/double registers.
s.d     $f12, FA_0_0_OFF2($fp)
s.d     $f14, FA_1_0_OFF2($fp)

endif 1:

# prepare arguments for ffi_closure_mips_inner_O32
REG_L   a0, 4($15)       # cif 
REG_L   a1, 8($15)       # fun
move    a2, $15          # user_data = go closure
addu    a3, $fp, V0_OFF2 # rvalue

addu    t9, $fp, A0_OFF2 # ar
REG_S   t9, CALLED_A4_OFF2($fp)

addu    t9, $fp, FA_0_0_OFF2 #fpr
REG_S   t9, CALLED_A5_OFF2($fp)

b $do_closure

$LFE1:

.end ffi_go_closure_O32

.align  2
.globl  ffi_closure_O32
.ent    ffi_closure_O32

ffi_closure_O32: $LFB2:

# Prologue
.frame  $fp, SIZEOF_FRAME2, ra
.set    noreorder
.cpload t9
.set    reorder
SUBU    $sp, SIZEOF_FRAME2
.cprestore GP_OFF2

$LCFI20:

REG_S   $16, S0_OFF2($sp)        # Save s0
REG_S   $fp, FP_OFF2($sp)        # Save frame pointer
REG_S   ra, RA_OFF2($sp)         # Save return address

$LCFI21:

move    $fp, $sp

$LCFI22:

# Store all possible argument registers. If there are more than
# four arguments, then they are stored above where we put a3.
REG_S   a0, A0_OFF2($fp)
REG_S   a1, A1_OFF2($fp)
REG_S   a2, A2_OFF2($fp)
REG_S   a3, A3_OFF2($fp)

# Load ABI enum to s0
REG_L   $16, 20($12)    # cif pointer follows tramp.
REG_L   $16, 0($16)     # abi is first member.

li      $13, 1          # FFI_O32
bne     $16, $13, 1f    # Skip fp save if FFI_O32_SOFT_FLOAT

ifndef __mips_soft_float

# Store all possible float/double registers.
s.d     $f12, FA_0_0_OFF2($fp)
s.d     $f14, FA_1_0_OFF2($fp)

endif 1:

# prepare arguments for ffi_closure_mips_inner_O32
REG_L   a0, 20($12)      # cif pointer follows tramp.
REG_L   a1, 24($12)      # fun
REG_L   a2, 28($12)      # user_data
addu    a3, $fp, V0_OFF2 # rvalue

addu    t9, $fp, A0_OFF2 # ar
REG_S   t9, CALLED_A4_OFF2($fp)

addu    t9, $fp, FA_0_0_OFF2 #fpr
REG_S   t9, CALLED_A5_OFF2($fp)

$do_closure:

la      t9, ffi_closure_mips_inner_O32
# Call ffi_closure_mips_inner_O32 to do the work.
jalr    t9

# Load the return value into the appropriate register.
move    $8, $2
li      $9, FFI_TYPE_VOID
beq     $8, $9, closure_done

li      $13, 1          # FFI_O32
bne     $16, $13, 1f    # Skip fp restore if FFI_O32_SOFT_FLOAT

ifndef __mips_soft_float

li      $9, FFI_TYPE_FLOAT
l.s     $f0, V0_OFF2($fp)
beq     $8, $9, closure_done

li      $9, FFI_TYPE_DOUBLE
l.d     $f0, V0_OFF2($fp)
beq     $8, $9, closure_done

li      $9, FFI_TYPE_COMPLEX
bne     $8, $9, 1f

li      $9, 8
l.s     $f0, V0_OFF2($fp)
l.s     $f2, V1_OFF2($fp)
beq     $3, $9, closure_done

li      $9, 16
l.d     $f0, V0_OFF2($fp)
l.d     $f2, (V0_OFF2+8)($fp)
beq     $3, $9, closure_done

endif 1:

REG_L   $3, V1_OFF2($fp)
REG_L   $2, V0_OFF2($fp)

closure_done:

# Epilogue
move    $sp, $fp
REG_L   $16, S0_OFF2($sp)        # Restore s0
REG_L   $fp, FP_OFF2($sp)        # Restore frame pointer
REG_L   ra,  RA_OFF2($sp)        # Restore return address
ADDU    $sp, SIZEOF_FRAME2
j       ra

$LFE2:

.end    ffi_closure_O32

/* DWARF-2 unwind info. */

.section        .eh_frame,"a",@progbits

$Lframe0:

.4byte  $LECIE0-$LSCIE0  # Length of Common Information Entry

$LSCIE0:

.4byte  0x0      # CIE Identifier Tag
.byte   0x1      # CIE Version
.ascii "zR\0"    # CIE Augmentation
.uleb128 0x1     # CIE Code Alignment Factor
.sleb128 4       # CIE Data Alignment Factor
.byte   0x1f     # CIE RA Column
.uleb128 0x1     # Augmentation size
.byte   0x00     # FDE Encoding (absptr)
.byte   0xc      # DW_CFA_def_cfa
.uleb128 0x1d
.uleb128 0x0
.align  2

$LECIE0:

$LSFDE0:

.4byte  $LEFDE0-$LASFDE0         # FDE Length

$LASFDE0:

.4byte  $LASFDE0-$Lframe0        # FDE CIE offset
.4byte  $LFB0    # FDE initial location
.4byte  $LFE0-$LFB0      # FDE address range
.uleb128 0x0     # Augmentation size
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI00-$LFB0
.byte   0xe      # DW_CFA_def_cfa_offset
.uleb128 0x18
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI01-$LCFI00
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1e    # $fp
.sleb128 -2      # SIZEOF_FRAME2 - 2*FFI_SIZEOF_ARG($sp)
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1f    # $ra
.sleb128 -1      # SIZEOF_FRAME2 - 1*FFI_SIZEOF_ARG($sp)
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI02-$LCFI01
.byte   0xc      # DW_CFA_def_cfa
.uleb128 0x1e
.uleb128 0x18
.align  2

$LEFDE0:

$LSFDE1:

.4byte  $LEFDE1-$LASFDE1         # FDE Length

$LASFDE1:

.4byte  $LASFDE1-$Lframe0        # FDE CIE offset
.4byte  $LFB1    # FDE initial location
.4byte  $LFE1-$LFB1      # FDE address range
.uleb128 0x0     # Augmentation size
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI10-$LFB1
.byte   0xe      # DW_CFA_def_cfa_offset
.uleb128 SIZEOF_FRAME2
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI11-$LCFI10
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x10    # $16
.sleb128 -3      # SIZEOF_FRAME2 - 3*FFI_SIZEOF_ARG($sp)
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1e    # $fp
.sleb128 -2      # SIZEOF_FRAME2 - 2*FFI_SIZEOF_ARG($sp)
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1f    # $ra
.sleb128 -1      # SIZEOF_FRAME2 - 1*FFI_SIZEOF_ARG($sp)
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI12-$LCFI11
.byte   0xc      # DW_CFA_def_cfa
.uleb128 0x1e
.uleb128 SIZEOF_FRAME2
.align  2

$LEFDE1:

$LSFDE2:

.4byte  $LEFDE2-$LASFDE2         # FDE Length

$LASFDE2:

.4byte  $LASFDE2-$Lframe0        # FDE CIE offset
.4byte  $LFB2    # FDE initial location
.4byte  $LFE2-$LFB2      # FDE address range
.uleb128 0x0     # Augmentation size
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI20-$LFB2
.byte   0xe      # DW_CFA_def_cfa_offset
.uleb128 SIZEOF_FRAME2
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI21-$LCFI20
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x10    # $16
.sleb128 -3      # SIZEOF_FRAME2 - 3*FFI_SIZEOF_ARG($sp)
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1e    # $fp
.sleb128 -2      # SIZEOF_FRAME2 - 2*FFI_SIZEOF_ARG($sp)
.byte   0x11     # DW_CFA_offset_extended_sf
.uleb128 0x1f    # $ra
.sleb128 -1      # SIZEOF_FRAME2 - 1*FFI_SIZEOF_ARG($sp)
.byte   0x4      # DW_CFA_advance_loc4
.4byte  $LCFI22-$LCFI21
.byte   0xc      # DW_CFA_def_cfa
.uleb128 0x1e
.uleb128 SIZEOF_FRAME2
.align  2

$LEFDE2:

endif

if defined __ELF__ && defined __linux__

.section .note.GNU-stack,"",%progbits

endif