class Complex
A Complex object houses a pair of values, given when the object is created as either rectangular coordinates or polar coordinates.
Rectangular Coordinates¶ ↑
The rectangular coordinates of a complex number are called the real and imaginary parts; see Complex number definition.
You can create a Complex object from rectangular coordinates with:
- 
A complex literal. 
- 
MethodKernel#Complex, either with numeric arguments or with certain string arguments.
- 
MethodString#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:
- 
Separately, with methods Complex#realandComplex#imaginary.
- 
Together, with method Complex#rect.
The corresponding (computed) polar values may be retrieved:
- 
Separately, with methods Complex#absandComplex#arg.
- 
Together, with method Complex#polar.
Polar Coordinates¶ ↑
The polar coordinates of a complex number are called the absolute and argument parts; see Complex polar plane.
In this class, the argument part in expressed radians (not degrees).
You can create a Complex object from polar coordinates with:
- 
MethodKernel#Complex, with certain string arguments.
- 
MethodString#to_c, for certain strings.
Note that each of the stored parts may be a an instance one of the classes Complex, Float, Integer, or Rational; they may be retrieved:
- 
Separately, with methods Complex#absandComplex#arg.
- 
Together, with method Complex#polar.
The corresponding (computed) rectangular values may be retrieved:
- 
Separately, with methods Complex#realandComplex#imag.
- 
Together, with method Complex#rect.
What’s Here¶ ↑
First, what’s elsewhere:
- 
ClassComplex inherits (directly or indirectly) from classes Numeric and Object.
- 
Includes (indirectly) module Comparable. 
Here, class Complex has methods for:
Creating Complex Objects¶ ↑
- 
::polar: Returns a new Complex object based on given polar coordinates.
- 
::rect(and its alias::rectangular): Returns a new Complex object based on given rectangular coordinates.
Querying¶ ↑
- 
abs(and its aliasmagnitude): Returns the absolute value forself.
- 
arg(and its aliasesangleandphase): Returns the argument (angle) forselfin radians.
- 
denominator: Returns the denominator ofself.
- 
finite?: Returns whether bothself.realandself.imageare finite.
- 
hash: Returns the integer hash value forself.
- 
imag(and its aliasimaginary): Returns the imaginary value forself.
- 
infinite?: Returns whetherself.realorself.imageis infinite.
- 
numerator: Returns the numerator ofself.
- 
polar: Returns the array[self.abs, self.arg].
- 
inspect: Returns a string representation ofself.
- 
real: Returns the real value forself.
- 
real?: Returnsfalse; for compatibility withNumeric#real?.
- 
rect(and its aliasrectangular): Returns the array[self.real, self.imag].
Comparing¶ ↑
- 
<=>: Returns whetherselfis less than, equal to, or greater than the given argument.
- 
==: Returns whetherselfis equal to the given argument.
Converting¶ ↑
- 
rationalize: Returns aRationalobject whose value is exactly or approximately equivalent to that ofself.real.
- 
to_c: Returnsself.
- 
to_d: Returns the value as a BigDecimal object. 
- 
to_f: Returns the value ofself.realas aFloat, if possible.
- 
to_i: Returns the value ofself.realas anInteger, if possible.
- 
to_r: Returns the value ofself.realas aRational, if possible.
- 
to_s: Returns a string representation ofself.
Performing Complex Arithmetic¶ ↑
- 
*: Returns the product ofselfand the given numeric.
- 
**: Returnsselfraised to power of the given numeric.
- 
+: Returns the sum ofselfand the given numeric.
- 
-: Returns the difference ofselfand the given numeric.
- 
-@: Returns the negation ofself.
- 
/: Returns the quotient ofselfand the given numeric.
- 
abs2: Returns square of the absolute value (magnitude) forself.
- 
conj(and its aliasconjugate): Returns the conjugate ofself.
- 
fdiv: ReturnsComplex.rect(self.real/numeric, self.imag/numeric).
Working with JSON¶ ↑
- 
::json_create: Returns a new Complex object, deserialized from the given serialized hash. 
- 
as_json: Returns a serialized hash constructed from self.
- 
to_json: Returns a JSONstring representingself.
These methods are provided by the JSON gem. To make these methods available:
require 'json/add/complex'
Constants
- I
- 
                      Equivalent to Complex.rect(0, 1):Complex::I # => (0+1i) 
Public Class Methods
Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational. Argument arg is given in radians; see Polar Coordinates:
Complex.polar(3) # => (3+0i) Complex.polar(3, 2.0) # => (-1.2484405096414273+2.727892280477045i) Complex.polar(-3, -2.0) # => (1.2484405096414273+2.727892280477045i)
static VALUE
nucomp_s_polar(int argc, VALUE *argv, VALUE klass)
{
    VALUE abs, arg;
    argc = rb_scan_args(argc, argv, "11", &abs, &arg);
    abs = nucomp_real_check(abs);
    if (argc == 2) {
        arg = nucomp_real_check(arg);
    }
    else {
        arg = ZERO;
    }
    return f_complex_polar_real(klass, abs, arg);
}
                        Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;
    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        real = nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        real = nucomp_real_check(real);
        imag = nucomp_real_check(imag);
        break;
    }
    return nucomp_s_new_internal(klass, real, imag);
}
                        Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
static VALUE
nucomp_s_new(int argc, VALUE *argv, VALUE klass)
{
    VALUE real, imag;
    switch (rb_scan_args(argc, argv, "11", &real, &imag)) {
      case 1:
        real = nucomp_real_check(real);
        imag = ZERO;
        break;
      default:
        real = nucomp_real_check(real);
        imag = nucomp_real_check(imag);
        break;
    }
    return nucomp_s_new_internal(klass, real, imag);
}
                        Public Instance Methods
Returns the product of self and numeric:
Complex.rect(2, 3) * Complex.rect(2, 3) # => (-5+12i) Complex.rect(900) * Complex.rect(1) # => (900+0i) Complex.rect(-2, 9) * Complex.rect(-9, 2) # => (0-85i) Complex.rect(9, 8) * 4 # => (36+32i) Complex.rect(20, 9) * 9.8 # => (196.0+88.2i)
VALUE
rb_complex_mul(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;
        get_dat2(self, other);
        comp_mul(adat->real, adat->imag, bdat->real, bdat->imag, &real, &imag);
        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);
        return f_complex_new2(CLASS_OF(self),
                              f_mul(dat->real, other),
                              f_mul(dat->imag, other));
    }
    return rb_num_coerce_bin(self, other, '*');
}
                        Returns self raised to power numeric:
Complex.rect(0, 1) ** 2 # => (-1+0i) Complex.rect(-8) ** Rational(1, 3) # => (1.0000000000000002+1.7320508075688772i)
VALUE
rb_complex_pow(VALUE self, VALUE other)
{
    if (k_numeric_p(other) && k_exact_zero_p(other))
        return f_complex_new_bang1(CLASS_OF(self), ONE);
    if (RB_TYPE_P(other, T_RATIONAL) && RRATIONAL(other)->den == LONG2FIX(1))
        other = RRATIONAL(other)->num; /* c14n */
    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat1(other);
        if (k_exact_zero_p(dat->imag))
            other = dat->real; /* c14n */
    }
    if (other == ONE) {
        get_dat1(self);
        return nucomp_s_new_internal(CLASS_OF(self), dat->real, dat->imag);
    }
    VALUE result = complex_pow_for_special_angle(self, other);
    if (!UNDEF_P(result)) return result;
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE r, theta, nr, ntheta;
        get_dat1(other);
        r = f_abs(self);
        theta = f_arg(self);
        nr = m_exp_bang(f_sub(f_mul(dat->real, m_log_bang(r)),
                              f_mul(dat->imag, theta)));
        ntheta = f_add(f_mul(theta, dat->real),
                       f_mul(dat->imag, m_log_bang(r)));
        return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (FIXNUM_P(other)) {
        long n = FIX2LONG(other);
        if (n == 0) {
            return nucomp_s_new_internal(CLASS_OF(self), ONE, ZERO);
        }
        if (n < 0) {
            self = f_reciprocal(self);
            other = rb_int_uminus(other);
            n = -n;
        }
        {
            get_dat1(self);
            VALUE xr = dat->real, xi = dat->imag, zr = xr, zi = xi;
            if (f_zero_p(xi)) {
                zr = rb_num_pow(zr, other);
            }
            else if (f_zero_p(xr)) {
                zi = rb_num_pow(zi, other);
                if (n & 2) zi = f_negate(zi);
                if (!(n & 1)) {
                    VALUE tmp = zr;
                    zr = zi;
                    zi = tmp;
                }
            }
            else {
                while (--n) {
                    long q, r;
                    for (; q = n / 2, r = n % 2, r == 0; n = q) {
                        VALUE tmp = f_sub(f_mul(xr, xr), f_mul(xi, xi));
                        xi = f_mul(f_mul(TWO, xr), xi);
                        xr = tmp;
                    }
                    comp_mul(zr, zi, xr, xi, &zr, &zi);
                }
            }
            return nucomp_s_new_internal(CLASS_OF(self), zr, zi);
        }
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        VALUE r, theta;
        if (RB_BIGNUM_TYPE_P(other))
            rb_warn("in a**b, b may be too big");
        r = f_abs(self);
        theta = f_arg(self);
        return f_complex_polar(CLASS_OF(self), f_expt(r, other),
                               f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
                        Returns the sum of self and numeric:
Complex.rect(2, 3) + Complex.rect(2, 3) # => (4+6i) Complex.rect(900) + Complex.rect(1) # => (901+0i) Complex.rect(-2, 9) + Complex.rect(-9, 2) # => (-11+11i) Complex.rect(9, 8) + 4 # => (13+8i) Complex.rect(20, 9) + 9.8 # => (29.8+9i)
VALUE
rb_complex_plus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;
        get_dat2(self, other);
        real = f_add(adat->real, bdat->real);
        imag = f_add(adat->imag, bdat->imag);
        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);
        return f_complex_new2(CLASS_OF(self),
                              f_add(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '+');
}
                        Returns the difference of self and numeric:
Complex.rect(2, 3) - Complex.rect(2, 3) # => (0+0i) Complex.rect(900) - Complex.rect(1) # => (899+0i) Complex.rect(-2, 9) - Complex.rect(-9, 2) # => (7+7i) Complex.rect(9, 8) - 4 # => (5+8i) Complex.rect(20, 9) - 9.8 # => (10.2+9i)
VALUE
rb_complex_minus(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        VALUE real, imag;
        get_dat2(self, other);
        real = f_sub(adat->real, bdat->real);
        imag = f_sub(adat->imag, bdat->imag);
        return f_complex_new2(CLASS_OF(self), real, imag);
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);
        return f_complex_new2(CLASS_OF(self),
                              f_sub(dat->real, other), dat->imag);
    }
    return rb_num_coerce_bin(self, other, '-');
}
                        Returns the negation of self, which is the negation of each of its parts:
-Complex.rect(1, 2) # => (-1-2i) -Complex.rect(-1, -2) # => (1+2i)
VALUE
rb_complex_uminus(VALUE self)
{
    get_dat1(self);
    return f_complex_new2(CLASS_OF(self),
                          f_negate(dat->real), f_negate(dat->imag));
}
                        Returns the quotient of self and numeric:
Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i) Complex.rect(900) / Complex.rect(1) # => (900+0i) Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i) Complex.rect(9, 8) / 4 # => ((9/4)+2i) Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
                        Returns:
- 
self.real <=> object.realif both of the following are true:- 
self.imag == 0.
- 
object.imag == 0. # Always true if object is numeric but not complex.
 
- 
- 
nilotherwise.
Examples:
Complex.rect(2) <=> 3 # => -1 Complex.rect(2) <=> 2 # => 0 Complex.rect(2) <=> 1 # => 1 Complex.rect(2, 1) <=> 1 # => nil # self.imag not zero. Complex.rect(1) <=> Complex.rect(1, 1) # => nil # object.imag not zero. Complex.rect(1) <=> 'Foo' # => nil # object.imag not defined.
static VALUE
nucomp_cmp(VALUE self, VALUE other)
{
    if (!k_numeric_p(other)) {
        return rb_num_coerce_cmp(self, other, idCmp);
    }
    if (!nucomp_real_p(self)) {
        return Qnil;
    }
    if (RB_TYPE_P(other, T_COMPLEX)) {
        if (nucomp_real_p(other)) {
            get_dat2(self, other);
            return rb_funcall(adat->real, idCmp, 1, bdat->real);
        }
    }
    else {
        get_dat1(self);
        if (f_real_p(other)) {
            return rb_funcall(dat->real, idCmp, 1, other);
        }
        else {
            return rb_num_coerce_cmp(dat->real, other, idCmp);
        }
    }
    return Qnil;
}
                        Returns true if self.real == object.real and self.imag == object.imag:
Complex.rect(2, 3) == Complex.rect(2.0, 3.0) # => true
static VALUE
nucomp_eqeq_p(VALUE self, VALUE other)
{
    if (RB_TYPE_P(other, T_COMPLEX)) {
        get_dat2(self, other);
        return RBOOL(f_eqeq_p(adat->real, bdat->real) &&
                          f_eqeq_p(adat->imag, bdat->imag));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
        get_dat1(self);
        return RBOOL(f_eqeq_p(dat->real, other) && f_zero_p(dat->imag));
    }
    return RBOOL(f_eqeq_p(other, self));
}
                        Returns the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(-1, 0).abs # => 1.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1, 1).abs # => 1.4142135623730951 # The square root of 2.
VALUE
rb_complex_abs(VALUE self)
{
    get_dat1(self);
    if (f_zero_p(dat->real)) {
        VALUE a = f_abs(dat->imag);
        if (RB_FLOAT_TYPE_P(dat->real) && !RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    if (f_zero_p(dat->imag)) {
        VALUE a = f_abs(dat->real);
        if (!RB_FLOAT_TYPE_P(dat->real) && RB_FLOAT_TYPE_P(dat->imag))
            a = f_to_f(a);
        return a;
    }
    return rb_math_hypot(dat->real, dat->imag);
}
                        Returns square of the absolute value (magnitude) for self; see polar coordinates:
Complex.polar(2, 2).abs2 # => 4.0
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rectangular(1.0/3, 1.0/3).abs2 # => 0.2222222222222222
static VALUE
nucomp_abs2(VALUE self)
{
    get_dat1(self);
    return f_add(f_mul(dat->real, dat->real),
                 f_mul(dat->imag, dat->imag));
}
                        Returns the argument (angle) for self in radians; see polar coordinates:
Complex.polar(3, Math::PI/2).arg # => 1.57079632679489660
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, 1.0/3).arg # => 0.33333333333333326
VALUE
rb_complex_arg(VALUE self)
{
    get_dat1(self);
    return rb_math_atan2(dat->imag, dat->real);
}
                        Returns the conjugate of self, Complex.rect(self.imag, self.real):
Complex.rect(1, 2).conj # => (1-2i)
Returns the denominator of self, which is the least common multiple of self.real.denominator and self.imag.denominator:
Complex.rect(Rational(1, 2), Rational(2, 3)).denominator # => 6
Note that n.denominator of a non-rational numeric is 1.
Related: Complex#numerator.
static VALUE
nucomp_denominator(VALUE self)
{
    get_dat1(self);
    return rb_lcm(f_denominator(dat->real), f_denominator(dat->imag));
}
                        Returns Complex.rect(self.real/numeric, self.imag/numeric):
Complex.rect(11, 22).fdiv(3) # => (3.6666666666666665+7.333333333333333i)
static VALUE
nucomp_fdiv(VALUE self, VALUE other)
{
    return f_divide(self, other, f_fdiv, id_fdiv);
}
                        Returns true if both self.real.finite? and self.imag.finite? are true, false otherwise:
Complex.rect(1, 1).finite? # => true Complex.rect(Float::INFINITY, 0).finite? # => false
Related: Numeric#finite?, Float#finite?.
static VALUE
rb_complex_finite_p(VALUE self)
{
    get_dat1(self);
    return RBOOL(f_finite_p(dat->real) && f_finite_p(dat->imag));
}
                        Returns the integer hash value for self.
Two Complex objects created from the same values will have the same hash value (and will compare using eql?):
Complex.rect(1, 2).hash == Complex.rect(1, 2).hash # => true
static VALUE
nucomp_hash(VALUE self)
{
    return ST2FIX(rb_complex_hash(self));
}
                        Returns the imaginary value for self:
Complex.rect(7).imag # => 0 Complex.rect(9, -4).imag # => -4
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).imag # => 0.7071067811865476 # Square root of 2.
Returns 1 if either self.real.infinite? or self.imag.infinite? is true, nil otherwise:
Complex.rect(Float::INFINITY, 0).infinite? # => 1 Complex.rect(1, 1).infinite? # => nil
Related: Numeric#infinite?, Float#infinite?.
static VALUE
rb_complex_infinite_p(VALUE self)
{
    get_dat1(self);
    if (!f_infinite_p(dat->real) && !f_infinite_p(dat->imag)) {
        return Qnil;
    }
    return ONE;
}
                        Returns a string representation of self:
Complex.rect(2).inspect # => "(2+0i)" Complex.rect(-8, 6).inspect # => "(-8+6i)" Complex.rect(0, Rational(1, 2)).inspect # => "(0+(1/2)*i)" Complex.rect(0, Float::INFINITY).inspect # => "(0+Infinity*i)" Complex.rect(Float::NAN, Float::NAN).inspect # => "(NaN+NaN*i)"
static VALUE
nucomp_inspect(VALUE self)
{
    VALUE s;
    s = rb_usascii_str_new2("(");
    f_format(self, s, rb_inspect);
    rb_str_cat2(s, ")");
    return s;
}
                        Returns the Complex object created from the numerators of the real and imaginary parts of self, after converting each part to the lowest common denominator of the two:
c = Complex.rect(Rational(2, 3), Rational(3, 4)) # => ((2/3)+(3/4)*i) c.numerator # => (8+9i)
In this example, the lowest common denominator of the two parts is 12; the two converted parts may be thought of as Rational(8, 12) and Rational(9, 12), whose numerators, respectively, are 8 and 9; so the returned value of c.numerator is Complex.rect(8, 9).
Related: Complex#denominator.
static VALUE
nucomp_numerator(VALUE self)
{
    VALUE cd;
    get_dat1(self);
    cd = nucomp_denominator(self);
    return f_complex_new2(CLASS_OF(self),
                          f_mul(f_numerator(dat->real),
                                f_div(cd, f_denominator(dat->real))),
                          f_mul(f_numerator(dat->imag),
                                f_div(cd, f_denominator(dat->imag))));
}
                        Returns the array [self.abs, self.arg]:
Complex.polar(1, 2).polar # => [1.0, 2.0]
See Polar Coordinates.
If self was created with rectangular coordinates, the returned value is computed, and may be inexact:
Complex.rect(1, 1).polar # => [1.4142135623730951, 0.7853981633974483]
static VALUE
nucomp_polar(VALUE self)
{
    return rb_assoc_new(f_abs(self), f_arg(self));
}
                        Returns the quotient of self and numeric:
Complex.rect(2, 3) / Complex.rect(2, 3) # => (1+0i) Complex.rect(900) / Complex.rect(1) # => (900+0i) Complex.rect(-2, 9) / Complex.rect(-9, 2) # => ((36/85)-(77/85)*i) Complex.rect(9, 8) / 4 # => ((9/4)+2i) Complex.rect(20, 9) / 9.8 # => (2.0408163265306123+0.9183673469387754i)
VALUE
rb_complex_div(VALUE self, VALUE other)
{
    return f_divide(self, other, f_quo, id_quo);
}
                        Returns a Rational object whose value is exactly or approximately equivalent to that of self.real.
With no argument epsilon given, returns a Rational object whose value is exactly equal to that of self.real.rationalize:
Complex.rect(1, 0).rationalize # => (1/1) Complex.rect(1, Rational(0, 1)).rationalize # => (1/1) Complex.rect(3.14159, 0).rationalize # => (314159/100000)
With argument epsilon given, returns a Rational object whose value is exactly or approximately equal to that of self.real to the given precision:
Complex.rect(3.14159, 0).rationalize(0.1) # => (16/5) Complex.rect(3.14159, 0).rationalize(0.01) # => (22/7) Complex.rect(3.14159, 0).rationalize(0.001) # => (201/64) Complex.rect(3.14159, 0).rationalize(0.0001) # => (333/106) Complex.rect(3.14159, 0).rationalize(0.00001) # => (355/113) Complex.rect(3.14159, 0).rationalize(0.000001) # => (7433/2366) Complex.rect(3.14159, 0).rationalize(0.0000001) # => (9208/2931) Complex.rect(3.14159, 0).rationalize(0.00000001) # => (47460/15107) Complex.rect(3.14159, 0).rationalize(0.000000001) # => (76149/24239) Complex.rect(3.14159, 0).rationalize(0.0000000001) # => (314159/100000) Complex.rect(3.14159, 0).rationalize(0.0) # => (3537115888337719/1125899906842624)
Related: Complex#to_r.
static VALUE
nucomp_rationalize(int argc, VALUE *argv, VALUE self)
{
    get_dat1(self);
    rb_check_arity(argc, 0, 1);
    if (!k_exact_zero_p(dat->imag)) {
       rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                self);
    }
    return rb_funcallv(dat->real, id_rationalize, argc, argv);
}
                        Returns the real value for self:
Complex.rect(7).real # => 7 Complex.rect(9, -4).real # => 9
If self was created with polar coordinates, the returned value is computed, and may be inexact:
Complex.polar(1, Math::PI/4).real # => 0.7071067811865476 # Square root of 2.
VALUE
rb_complex_real(VALUE self)
{
    get_dat1(self);
    return dat->real;
}
                        Returns false; for compatibility with Numeric#real?.
static VALUE
nucomp_real_p_m(VALUE self)
{
    return Qfalse;
}
                        Returns a new Complex object formed from the arguments, each of which must be an instance of Numeric, or an instance of one of its subclasses: Complex, Float, Integer, Rational; see Rectangular Coordinates:
Complex.rect(3) # => (3+0i) Complex.rect(3, Math::PI) # => (3+3.141592653589793i) Complex.rect(-3, -Math::PI) # => (-3-3.141592653589793i)
Complex.rectangular is an alias for Complex.rect.
Returns self.
static VALUE
nucomp_to_c(VALUE self)
{
    return self;
}
                        Returns the value of self.real as a Float, if possible:
Complex.rect(1, 0).to_f # => 1.0 Complex.rect(1, Rational(0, 1)).to_f # => 1.0
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).
static VALUE
nucomp_to_f(VALUE self)
{
    get_dat1(self);
    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Float",
                 self);
    }
    return f_to_f(dat->real);
}
                        Returns the value of self.real as an Integer, if possible:
Complex.rect(1, 0).to_i # => 1 Complex.rect(1, Rational(0, 1)).to_i # => 1
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)).
static VALUE
nucomp_to_i(VALUE self)
{
    get_dat1(self);
    if (!k_exact_zero_p(dat->imag)) {
        rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Integer",
                 self);
    }
    return f_to_i(dat->real);
}
                        Returns the value of self.real as a Rational, if possible:
Complex.rect(1, 0).to_r # => (1/1) Complex.rect(1, Rational(0, 1)).to_r # => (1/1) Complex.rect(1, 0.0).to_r # => (1/1)
Raises RangeError if self.imag is not exactly zero (either Integer(0) or Rational(0, n)) and self.imag.to_r is not exactly zero.
Related: Complex#rationalize.
static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);
    if (RB_FLOAT_TYPE_P(dat->imag) && FLOAT_ZERO_P(dat->imag)) {
        /* Do nothing here */
    }
    else if (!k_exact_zero_p(dat->imag)) {
        VALUE imag = rb_check_convert_type_with_id(dat->imag, T_RATIONAL, "Rational", idTo_r);
        if (NIL_P(imag) || !k_exact_zero_p(imag)) {
            rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
                     self);
        }
    }
    return f_to_r(dat->real);
}
                        Returns a string representation of self:
Complex.rect(2).to_s # => "2+0i" Complex.rect(-8, 6).to_s # => "-8+6i" Complex.rect(0, Rational(1, 2)).to_s # => "0+1/2i" Complex.rect(0, Float::INFINITY).to_s # => "0+Infinity*i" Complex.rect(Float::NAN, Float::NAN).to_s # => "NaN+NaN*i"
static VALUE
nucomp_to_s(VALUE self)
{
    return f_format(self, rb_usascii_str_new2(""), rb_String);
}